Sesquiterpenoids from Ligularia dentata

by Hitomi Baba, Yasunori Yaoita, and Masao Kikuchi*

Department of Molecular Structural Analysis, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan (phone: $+81-22-234-4181$; fax: $+81-22-275-2013$; e-mail: mkikuchi@tohoku-pharm.ac.jp)

Five new compounds were isolated from the roots of *Ligularia dentata*, including four bisabolanetype sesquiterpenoids, $1 - 4$, as well a new eudesmane, 5. The previously isolated $3\alpha, 6\alpha, 9$ -tris(angeloyloxy)-2a,4b-dihydroxy-7,11-epoxybisabol-10(15)-en-5-one (6), when left as an oil in a refrigerator over nine months, gave rise to a mixture of two positional isomers, 7 and 8. Their formation is rationalized by means of epoxide ring opening and shift of an angeloyl (Ang) group. The structures of compounds $1-5, 7$, and 8 were established by in-depth spectroscopic (UV, CD, IR, 1D- and 2D-NMR) as well as massspectrometric methods.

Introduction. – Ligularia dentata HARA (Compositae) has long been used as a medicinal herb in China to ease breathing, stimulate blood flow, reduce inflammation, alleviate pain, stop coughs, and to get rid of phlegm [1]. Recently, we reported the structure determination of five new bisabolane-type sesquiterpenoids and two new lactone derivatives from the roots of L. dentata [2]. In continuation of our phytochemical studies, we, herein, report the isolation and structure elucidation of five new constituents, $1-5$, from the roots of L. dentata. In addition, we report that the recently isolated compound 6 [2], when left in the refrigerator over longer periods of time, undergoes a chemical conversion.

Results and Discussion. – 1. Structure Elucidation of Compounds $1-5$. The Et₂Osoluble part of the MeOH extract of the roots of L. dentata yielded the new compounds 1 – 5 after repeated chromatographic purification.

Compound 1, obtained as a colorless oil, had the molecular formula $C_2H_{30}O_6$, based on HR-EI-MS analysis (m/z 390.2062 (M^+ ; calc. 390.2043)). The IR spectrum showed the presence of an OH group (3479 cm⁻¹), a vinyl ester (1760, 1646 cm⁻¹), an α , β unsaturated ester (1702, 1646 cm⁻¹), and a cross-conjugated C=O moiety (1673, 1602 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **1** (*Table 1*) exhibited signals due to four Me groups $(\delta(H)$ 1.44 (s) , 1.54 (s) , 1.81 (s) , 2.11 $(d, J = 1.8 \text{ Hz})$; $\delta(C)$ 13.8, 14.9, 17.8, 25.7), one AcO group $(\delta(H) 1.89 (s); \delta(C) 19.9, 167.8)$, an angeloyl $(Ang)^1$ group $(\delta(H) 1.71 (dq, J = 1.5, 1.5 Hz), 1.82 (dq, J = 7.0, 1.5 Hz), 5.63 (qq, J = 7.0, 1.5 Hz); \delta(C)$ 15.9 (Me), 20.6 (Me), 127.6 (C_q), 139.9 (CH), 167.9 (C_q)) [3], two CH₂ moieties (δ (H) 2.12 – 2.14 (m), 2.34 – 2.39 (m), 2.52 (br. dd, $J = 14.7, 3.7$ Hz), 2.96 (dd, $J = 14.7, 3.7$); δ (C) 31.5, 35.6), two oxygenated CH groups (δ (H) 3.99 (ddd, J = 8.1, 3.7, 3.7 Hz), 5.54

¹⁾ Angelic acid $(AngOH) = (Z)$ -2-methylbut-2-enoic acid.

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

 $(t, J = 7.3 \text{ Hz})$; $\delta(C)$ 68.7, 74.2), one C=CH moiety ($\delta(H)$ 4.96 (br. t, $J = 6.3 \text{ Hz}$); $\delta(C)$ 118.7 (CH), 135.2 (C_a)), two fully substituted C=C groups (δ (C) 128.9, 143.8, 143.9, 144.2), and one OH group ($\delta(H)$ 3.88 (br. d, $J = 8.1 \text{ Hz}$)). To accommodate eight degrees of unsaturation, compound 1 was proposed to have a monocyclic sesquiterpene skeleton, with an AngO and an AcO group, a cross-conjugated $C=O$ moiety, and one C=CH moiety.

The ¹H,¹H-COSY spectrum of **1** (*Fig. 1,a*) implied connectivities of H-C(5)²) to both CH₂(6) and to an OH group, of H–C(9) to CH₂(8), and of CH₂(8) to H–C(7). The HMBC spectrum of 1 (Fig. 1,a) showed correlations between CH₂(6) and C(1), between $H-C(9)$ and the Ang C=O group, between Me(12) and C(7), between $Me(13)$ and $C(7)$, between $Me(15)$ and $C(1)$, $C(9)$, and $C(10)$, and between $Me(14)$ and $C(3)$, $C(4)$, and $C(5)$, respectively. The presence of an AcO group at $C(3)$ was indicated by a NOESY cross-peak between the Me group of the AcO moiety and Me(14) (*Fig. 1,a*). Therefore, the constitution of 1 was deduced, the parent framework being a bisabolatrienone.

The relative configuration of 1 was determined as follows. The coupling constants for H–C(5) $(J(5, 6a) = 3.7$ Hz, $J(5, 6\beta) = 3.7$ Hz) suggested that the OH group was in pseudo-axial β -position, which was supported by the NOESY cross-peaks between H–C(5) and both $H_a-C(6)$ and $H_\beta-C(6)$ (*Fig. 1,b*). The C=C bond between C(1) and C(10) was (E)-configured, based on a NOESY cross-peak between $H_{\beta}-C(6)$ and

²⁾ Arbitrary numbering.

Position	$1^a)$		$2^b)$		
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	
$\mathbf{1}$		128.9	3.26 (ddd, $J = 6.6, 2.9, 1.5$)	55.5	
$\mathbf{2}$		$n.d.^c)$	5.54 (ddq, $J = 6.6, 3.3, 1.8$)	68.8	
3		143.8*	6.66 (dq, $J = 3.3, 1.5$)	142.8	
$\overline{4}$		143.9*		137.8	
5	3.99 (ddd, $J = 8.1, 3.7, 3.7$)	68.7		192.5	
6	2.52 (br. dd, $J = 14.7, 3.7, Ha$),	35.6		101.5	
	2.96 (dd, $J = 14.7, 3.7, H_8$)				
$\overline{7}$	4.96 (br. t, $J=6.3$)	118.7	$5.18 - 5.19$ (<i>m</i>)	78.0	
8	$2.12 - 2.14$ (<i>m</i>),	31.5	$1.96 - 1.97$ (m, H _a),	37.1	
	$2.34 - 2.39$ (<i>m</i>)		2.23 (ddd, $J = 15.0, 4.0, 2.2, Hb$)		
9	5.54 $(t, J = 7.3)$	74.2	4.70 (dddd, $J = 8.1, 4.0, 2.2, 1.8$)	81.4	
10		144.2		150.1	
11		135.2		72.6	
12	1.54(s)	25.7	1.209*	24.8*	
13	1.44 (s)	17.8	$1.213*$	$28.2*$	
14	1.81(s)	14.9	1.81 (dd, $J = 1.5, 1.5$)	15.5	
15	2.11 $(d, J=1.8)$	13.8	5.17 $(dd, J=1.8, 1.5, Ha)$,	109.3	
			5.20 $(dd, J=2.9, 2.2, H_h)$		
1'		167.9		168.2	
$1^{\prime\prime}$				169.2	
2^{\prime}		127.6		128.8	
$2^{\prime\prime}$				129.1	
3'	5.63 $(qq, J = 7.0, 1.5)$	139.9	6.10 $(qq, J = 7.3, 1.5)$	138.8	
$3^{\prime\prime}$			6.22 $(qq, J = 7.3, 1.5)$	140.7	
4 [′]	1.82 $(dq, J = 7.0, 1.5)$	15.9	1.94 $(dq, J = 7.3, 1.5)$	16.0	
$4^{\prime\prime}$			2.00 $(dq, J = 7.3, 1.5)$	16.1	
5'	1.71 $(dq, J = 1.5, 1.5)$	20.6	1.92 $(dq, J=1.5, 1.5)^d$	20.7	
$5^{\prime\prime}$				20.8	
$5-OH$	3.88 (br. d, $J = 8.1$)				
6-MeO			3.47(s)	52.4	
$3-AcO$	1.89(s)	19.9			
		167.8			

Table 1. ¹H- and ¹³C-NMR Data of 1 and 2. At 600/150 MHz, resp.; δ in ppm, J in Hz. Asterisks (*) mark interchangeable signals.

^a) In C₆D₆. ^b) In CD₃OD. ^c) Not detected. ^d) 5'- and 5''-Signals (2 Me).

 $H-C(9)$ (*Fig. 1,b*). The absolute configuration at $C(5)$ was determined to be (R) from the circular-dichroism (CD) spectrum, in which a positive Cotton effect was observed at 244 nm ($\Delta \epsilon$ = +2.56) [4]. The absolute configuration at C(9) remains to be established. Accordingly, the structure of 1 was determined as (1E,5R)-3-acetoxy-9-(angeloyloxy)- 5-hydroxybisabola-3,1(10),7(11)-trien-2-one3).

Compound 2, obtained as a colorless oil, had the molecular formula $C_{26}H_{36}O_8$, based on HR-EI-MS analysis (m/z 476.2413 (M^+ ; calc. 476.2410)). The IR spectrum

³⁾ For systematic names, see Exper. Part.

Fig. 1. a) 1H ,¹H-COSY (\rightarrow), HMBC (\rightarrow), and NOESY (----) correlations for **1**. b) Selected coupling constants (----) and further NOEs (\leftrightarrow) for **1**.

showed the presence of an OH group (3525 cm⁻¹), an α , β -unsaturated ester (1713, 1647 cm⁻¹), and an α , β -unsaturated C=O moiety (1692, 1563 cm⁻¹). The ¹H- and ¹³C-NMR spectra of 2 (*Table 1*) exhibited signals due to three Me groups (δ (H) 1.209 (s) , 1.213 (s) , 1.81 $(dd, J=1.5, 1.5 \text{ Hz})$; δ (C) 15.5, 24.8, 28.2), two AngO groups (δ (H) 1.92 (dq, $J = 1.5$, 1.5 Hz, 6 H), 1.94 (dq, $J = 7.3$, 1.5 Hz), 2.00 (dq, $J = 7.3$, 1.5 Hz), 6.10 $(qq, J = 7.3, 1.5 \text{ Hz})$, 6.22 $(qq, J = 7.3, 1.5 \text{ Hz})$; δ (C) 16.0 (Me), 16.1 (Me), 20.7 (Me), 20.8 (Me), 128.8 (C_q), 129.1 (C_q), 138.8 (CH), 140.7 (CH), 168.2 (C_q), 169.2 (C_q)), a CH₂ group (δ (H) 5.17 (dd, J = 1.8, 1.5 Hz), 5.20 (dd, J = 2.9, 2.2 Hz); δ (C) 109.3 $(CH₂), 150.1 (C_q)),$ one MeO function $(\delta(H) 3.47 (s); \delta(C) 52.4)$, three oxygenated CH groups (δ (H) 4.70 (dddd, J = 8.1, 4.0, 2.2, 1.8 Hz), 5.18 – 5.19 (m), 5.54 (ddq, J = 6.6, 3.3, 1.8 Hz); δ (C) 68.8, 78.0, 81.4), two oxygenated, quaternary, sp³-type C-atoms (δ (C) 72.6, 101.5), one C=CH moiety (δ (H) 6.66 (dq, J = 3.3, 1.5 Hz); δ (C) 137.8 (C_o), 142.8 (CH)), and one C=O group (δ (C) 192.5).

The ¹H,¹H-COSY spectrum of 2 (*Fig. 2,a*) implied connectivities of $H - C(2)^2$) to both H–C(3) and H–C(1), of H–C(9) to CH₂(8), and of CH₂(8) to H–C(7). The HMBC spectrum showed correlations between Me(12) and both $C(7)$ and $C(11)$, between Me(13) and both $C(7)$ and $C(11)$, between $CH₂(15)$ and both $C(1)$ and $C(9)$, between Me(14) and $C(3)$, $C(4)$, and $C(5)$, and between the MeO group and $C(6)$. By considering the chemical shifts of H – C(2) (δ (H) 5.54) and H – C(7) (δ (H) 5.18 – 5.19), the linking positions of the two AngO groups were determined to be $C(2)$ and $C(7)$.

According to the molecular formula of 2, there were nine degrees of unsaturation. Two Ang groups, an α , β -unsaturated C=O moiety, and an exocyclic C=C bond

Fig. 2. a) ${}^{1}H,{}^{1}H\text{-}COSY$ (\rightarrow) and HMBC (\rightarrow) correlations for 2. b) NOESY (\leftrightarrow) Correlations for 2.

accounted for eight of those. The remaining degree of unsaturation was assumed to be due to a tetrahydrofuran ring formed between $C(6)$ and $C(9)$, as inferred from the ¹³C-NMR data (δ (C) 81.4 (C(9)), 101.5 (C(6))) [5][6]. Therefore, the constitution of 2 was deduced.

The relative configuration of 2 was determined by NOESY experiments. The NOE cross-peaks observed between H–C(2) and H–C(9), between MeO and $\rm{H}_{a}-C(8),$ and between $H_b - C(8)$ and $H_a - C(15)$ implied that the 2-AngO group, the 6-MeO group, $H - C(1)$, and the side chain at $C(9)$ were on the β -face of the ring system (Fig. 2,b). The absolute configuration of 2 was determined as $(1S, 2R, 6S, 9R)$, based on the CD spectrum, in which a positive Cotton effect was observed at 241 nm ($\Delta \epsilon$ = $+10.58$ [4]. The absolute configuration at C(7) remains to be established. Accordingly, the structure of 2 was determined as $(1S, 2R, 6S, 9R)$ -2,7-bis(angeloyloxy)-6,9epoxy-11-hydroxy-6-methoxybisabola-3,10(15)-dien-5-one3).

Compound 3, obtained as a colorless oil, had the molecular formula $C_{21}H_{30}O_6$, based on HR-EI-MS analysis (m/z 378.2049 (M^+ ; calc. 378.2042)). The UV spectrum of 3 showed the typical absorption maxima of a benzene chromophore at 204 and 280 nm. The ¹H- and ¹³C-NMR spectra of 3 (*Table 2*) exhibited signals due to a substituted i-Pr group $(\delta(H) 0.92 \text{ (s)}, 0.98 \text{ (s)}; \delta(C) 20.2 \text{ (Me)}, 21.0 \text{ (Me)}, 74.9 \text{ (C}_q)\text{), one Me group}$ $(\delta(H) 1.53 (s); \delta(C) 24.2)$, an AngO group $(\delta(H) 1.83 (dq, J=1.5, 1.5 Hz)$, 2.02 $(dq,$ $J = 7.3, 1.5$ Hz), 5.75 (qq, $J = 7.3, 1.5$ Hz); δ (C) 16.0 (Me), 20.8 (Me), 127.5 (C_q), 139.9 (CH) , 166.9 (C_q)), one Me group attached to a benzene ring $(\delta(H)$ 2.33 (s) ; $\delta(C)$ 15.6), one MeO group $(\delta(H) 2.98 (s); \delta(C) 49.5)$, two oxygenated CH $(\delta(H) 3.67 (dd, J = 8.1,$ 8.1 Hz), 5.92 (dd, J = 7.3, 3.3 Hz); δ (C) 77.8, 82.6), an oxygenated, quaternary, sp³-type C-atom (δ (C) 89.5), a benzene ring (δ (H) 6.63 (d, J = 8.4 Hz), 6.77 (d, J = 8.4 Hz); $\delta(C)$ 112.1 (CH), 116.4 (CH), 123.9 (C_q), 124.3 (C_q), 142.3 (C_q), 144.4 (C_q)), and two OH groups $(\delta(H) 5.94 (s), 9.60 (s)).$

The ¹H,¹H-COSY spectrum of **3** (*Fig. 3,a*) implied connectivities of H-C(2) to $H-C(3)$, of $H-C(9)$ to $CH₂(8)$, and of $CH₂(8)$ to $H-C(7)$. The HMBC spectrum (Fig. 3,a) showed correlations between $H - C(2)$ and $C(1)$, between Me(12) and both $C(7)$ and $C(11)$, between Me(13) and both $C(7)$ and $C(11)$, between Me(15) and $C(1)$, $C(10)$, and $C(9)$, between Me(14) and $C(3)$, $C(4)$, and $C(5)$, between MeO and $C(11)$, and between the OH groups and $C(5)$ and $C(6)$, respectively.

Fig. 3. a) ${}^{1}H,{}^{1}H\text{-}COSY$ (\rightarrow) and HMBC (\rightarrow) correlations for 3. b) NOESY (\leftrightarrow) Correlations for 3.

By considering the chemical shift of $H-C(9)$ ($\delta(H)$ 5.92), the linking position of the AngO group was determined to be at C(9). According to the molecular formula,

Position	3	4		
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
$\mathbf{1}$		123.9		123.3
$\overline{2}$	6.77 $(d, J = 8.4)$	116.4	6.65 $(d, J=8.3)$	120.4
3	6.63 $(d, J = 8.4)$	112.1	6.63 $(d, J = 8.3)$	122.2
$\overline{4}$		124.3		124.7
5		144.4		144.2
6		142.3		141.4
τ	3.67 (dd, $J = 8.1, 8.1$)	82.6	$3.61 - 3.63$ (<i>m</i>)	73.7
8	1.81 (ddd, $J = 14.3, 8.1, 3.3$),	33.5	$1.88 - 1.89$ (<i>m</i> , 2 H)	37.1
	2.05 (ddd, $J = 14.3$, 8.1, 7.3)			
9	5.92 (dd, $J = 7.3$, 3.3)	77.8	5.84 (dd, $J = 7.0, 5.5$)	74.6
10		89.5		149.2
11		74.9		76.6
12	$0.92(s)*$	$20.2*$	$0.80(s)*$	$19.0*$
13	$0.98(s)*$	$21.0*$	$0.84 (s)*$	$20.2*$
14	2.33(s)	15.6	2.32(s)	15.7
15	1.53(s)	24.2	5.14 $(d, J = 1.1)$,	114.6
			5.33 $(dd, J=1.1, 1.1)$	
1'		166.9		169.4
2^{\prime}		127.5		127.6
3'	5.75 $(qq, J = 7.3, 1.5)$	139.9	5.71 $(qq, J = 7.3, 1.5)$	141.0
4'	2.02 (dq, $J = 7.3$, 1.5)	16.0	1.91 $(dq, J = 7.3, 1.5)$	16.1
5'	1.83 $(dq, J = 1.5, 1.5)$	20.8	1.80 $(dq, J=1.5, 1.5)$	20.5
$5-OH$	5.94 (s)		5.98 (br. s)	
$6-OH$	9.60(s)		9.39 (br. s)	
$7-OH$			1.95 (br. s)	
$11-MeO$	2.98(s)	49.5	2.79(s)	48.7

Table 2. ¹H- and ¹³C-NMR Data of 3 and 4. At 600/150 MHz, resp., in C_6D_6 ; δ in ppm, J in Hz. Asterisks (*) mark interchangeable signals.

there were seven degrees of unsaturation in 3. The Ang group and a benzene ring accounted for six of those. The remaining one was assumed to be due to a tetrahydrofuran ring formed between $C(10)$ and $C(7)$, on the basis of the ¹³C-NMR data ($\delta(C)$ 82.6 (C(7)), 89.5 (C(10))) [5][6]. Therefore, the constitution of 3 was deduced.

The relative configuration of the substituents on the tetrahydrofuran ring were determined by NOESY experiments. The NOE cross-peaks observed between $H-C(9)$ and both $H - C(2)$ and $H - C(7)$, and between Me(15) and both Me(12) and Me(13) implied that the Me group at C(10), the AngO group at C(9), and the MeO(Me₂)C substituent at $C(7)$ occurred on the α -face of the ring system (*Fig. 3,b*). The absolute configuration of 3 could not be determined yet. From these data, the structure of 3 was elucidated as 9α -(angeloyloxy)-7 β ,10 β -epoxy-11-methoxybisabola-1,3,5-triene-5,6-di $ol³$).

Compound 4, obtained as a colorless oil, had the molecular formula $C_{21}H_{30}O_6$, based on HR-EI-MS analysis (m/z 378.2047 (M^+ ; calc. 378.2042)). The UV spectrum showed the typical absorption maxima of a benzene chromophore at 203 and 279 nm.

The 1 H- and 13 C-NMR spectra of 4 (*Table 2*) exhibited signals due to a substituted i-Pr group $(\delta(H) 0.80 (s), 0.84 (s); \delta(C) 19.0 (Me), 20.2 (Me), 76.6 (C_a)),$ an AngO group $(\delta(H) 1.80 (dq, J = 1.5, 1.5 Hz), 1.91 (dq, J = 7.3, 1.5 Hz), 5.71 (qq, J = 7.3, 1.5 Hz); \delta(C)$ 16.1 (Me), 20.5 (Me), 127.6 (C_a), 141.0 (CH), 169.4 (C_a)), a Me group attached to a benzene ring $(\delta(H) 2.32 \text{ (s)}; \delta(C) 15.7)$, a MeO group $(\delta(H) 2.79 \text{ (s)}; \delta(C) 48.7)$, a CH₂ = moiety (δ (H) 5.14 (d, J = 1.1 Hz), 5.33 (dd, J = 1.1, 1.1 Hz); δ (C) 114.6 (CH₂), 149.2 (C_a)), two oxygenated CH groups $(\delta(H)$ 3.61 – 3.63 (*m*), 5.84 (*dd*, J = 7.0, 5.5 Hz); δ (C) 73.7, 74.6), a benzene ring (δ (H) 6.63 (d, J = 8.3 Hz), 6.65 (d, J = 8.3 Hz); δ (C) 120.4 (CH), 122.2 (CH), 123.3 (C_q), 124.7 (C_q), 141.4 (C_q), 144.2 (C_q)), and three OH groups $(\delta(H) 1.95$ (br. s), 5.98 (br. s), 9.39 (br. s)).

The ¹H,¹H-COSY spectrum of **4** (*Fig. 4*) implied connectivities of H-C(9) to $CH₂(8)$, of CH₂(8) to H-C(7), and of H-C(7) to the 7-OH group. The HMBC spectrum (Fig. 4) showed correlations between Me(12) and both $C(7)$ and $C(11)$, between Me(13) and both $C(7)$ and $C(11)$, between $CH₂(15)$ and both $C(1)$ and $C(9)$, between Me(14) and C(3), C(4), and C(5), between MeO and C(11), between the 5-OH group and $C(4)$, and between the 6-OH group and $C(5)$. By considering the chemical shift of $H-C(9)$ ($\delta(H)$ 5.84), the linking position of the AngO group was determined to be at $C(9)$. The absolute configurations at $C(9)$ and $C(7)$ remain to be established. Therefore, the structure of 4 was determined as 9-angeloyloxy-11 methoxybisabola-1,3,5,10(15)-tetraene-5,6,7-triol2).

Fig. 4. ${}^{1}H, {}^{1}H\text{-}COSY$ (—) and $HMBC$ (\rightarrow) correlations for **4**

Compound 5, obtained as a colorless oil, had the molecular formula C_1 ₅H₂₄O₂, based on HR-EI-MS analysis (m/z 236.1789 (M^+ ; calc. 236.1776)). The IR spectrum showed the presence of OH groups (3503 cm⁻¹). The ¹H- and ¹³C-NMR spectra of 5 (Table 3) exhibited signals due to two Me groups $(\delta(H) 1.63 (s), 1.75 (s); \delta(C) 19.3,$ 20.7), an oxygenated CH group ($\delta(H)$ 3.67 (dd, J = 11.5, 3.9 Hz); $\delta(C)$ 79.8), an oxygenated CH₂ moiety ($\delta(H)$ 3.78 (d, J = 11.7 Hz), 3.87 (d, J = 11.7 Hz); $\delta(C)$ 63.0), an exocyclic CH= unit (δ (H) 4.72 (br. s, 2 H); δ (C) 108.6 (CH₂), 150.2 (C_a)), and a fully substituted C=C bond $(\delta(C)$ 127.8, 129.4).

The ¹H,¹H-COSY spectrum of 5 (*Fig.* 5,*a*) implied connectivities of H-C(1) to CH₂(2), of CH₂(2) to CH₂(3), of CH₂(6) to H–C(7), of H–C(7) to CH₂(8), and of $CH₂(8)$ to CH₂(9). The HMBC spectrum (*Fig.* 5,*a*) showed correlations between $CH₂(12)$ and $C(7)$, between Me(13) and $C(7)$, between $CH₂(15)$ and $C(1)$, and between Me(14) and C(3), C(4) and C(5), respectively. Therefore, the constitution of 5 was deduced.

The relative configuration of 5 was determined as follows. The coupling constants for H-C(1) $(J(1,2\beta) = 11.5$ Hz, $J(1,2\alpha) = 3.9$ Hz) suggested that the OH group at C(1)

Position	$\delta(H)$	$\delta(C)$
$\mathbf{1}$	3.67 (dd, $J = 11.5, 3.9$)	79.8
$\overline{2}$	$1.78 - 1.80$ (<i>m</i>),	27.7
	$1.91 - 1.97$ (<i>m</i>)	
3	1.88 (ddd, $J = 11.5$, 3.9, 3.7, H _{β}),	31.4
	$2.06 - 2.10$ (<i>m</i> , H _a)	
$\overline{4}$		129.4
5		127.8
6	1.76 – 1.77 (m, H_β) ,	31.2
	2.55 (ddd, $J = 13.9, 3.4, 2.2, H_a$)	
7	$1.72 - 1.73$ (m)	45.8
8	1.56 – 1.61 (m, H_β) ,	26.9
	$1.68 - 1.71$ (m, H_a)	
9	1.12 (ddd, $J = 13.2$, 13.2, 3.9, H _a),	32.8
	2.60 (ddd, $J = 13.2$, 3.4, 3.4, H_8)	
10		43.2
11		150.2
12	4.72 (br. s , $2H$)	108.6
13	1.75(s)	20.7
14	1.63(s)	19.3
15	3.78 $(d, J = 11.7, H_a)$,	63.0
	3.87 (d, $J = 11.7$, H _b)	

Table 3. ¹H- and ¹³C-NMR Data of 5. At 400/100 MHz, resp., in CDCl₃; δ in ppm, *J* in Hz.

Fig. 5. a) lH , $^lH\text{-}COSY$ (\rightarrow) and $HMEC$ (\rightarrow) correlations for **5**. b) $NOEs$ (\leftrightarrow) and W-type couplings ($\leftarrow \rightarrow$) for 5.

was in pseudo-equatorial β -position, which was supported by a W-type coupling observed between $H - C(1)$ and $H_a - C(15)$ in the long-range ¹H,¹H-COSY spectrum (*Fig.* 5,*b*). The NOESY cross-peak observed between $H - C(7)$ and $H_a - C(9)$ implied that the isopropenyl group at $C(7)$ was β -configured. Thus, the structure of 5 was determined as eudesma-4,11-diene-1 β ,15-diol, the absolute configuration of which remains to be established.

2. Spontaneous Conversion of a Previously Isolated Bisabolane Derivative. Recently, we reported the isolation of the bisabolane derivative 6 (= 3α ,6 α ,9tris(angeloyloxy)-2a,4 β -dihydroxy-7,11-epoxybisabol-10(15)-en-5-one) from the roots of L. dentata [2]. Interestingly, when left as an oil in the refrigerator for a long time (nine months), we observed that 6 was partly converted into two new compounds identified as 7 and 8, in yields of 13 and 25%, respectively.

Compound 7, obtained as a colorless oil, had the molecular formula $C_{30}H_{44}O_{11}$, based on HR-EI-MS analysis (m/z) 580.2877 $(M^+;$ calc. 580.2883)). The ¹H- and

¹³C-NMR spectra of **7** (see *Exper. Part*) were very similar to those of **6**, but lacked the signals due to the epoxide ring of 6 ; instead, the signals due to an oxygenated CH $(\delta(H)$ 4.22 (dd, J = 8.3, 4.6 Hz); $\delta(C)$ 73.4) and an oxygenated, quaternary, sp³-type Catom (δ (C) 78.7 (C)) were found. The ¹H,¹H-COSY spectrum of **7** (*Fig. 6*) implied connectivities of H–C(9) to CH₂(8), and of CH₂(8) to H–C(7). The HMBC spectrum (Fig. 6) showed correlations between Me(12) and both $C(7)$ and $C(11)$, between Me(13) and both $C(7)$ and $C(11)$, and between $CH₂(15)$ and $C(9)$. By considering the chemical shift of $H-C(7)$ ($\delta(H)$ 5.01), the linking position of the AngO group was determined to be $C(7)$. The absolute configurations at $C(9)$ and $C(7)$ remain to be established. Accordingly, the structure of 7 was determined as 3α , 6α , 7 -tris(angeloyloxy)-2a,4 β ,9,11-tetrahydroxybisabol-10(15)-en-5-one³), which is a new compound.

Fig. 6. $\,^1H,\,^1H\text{-}COSY\,$ (—) and $HMBC\,$ (\rightarrow) correlations for $\bf 7$

The molecular formula of 8 was determined as $C_{30}H_{44}O_{11}$, based on HR-FAB-MS analysis (m/z 579.2785 ([M – H]⁻; calc. 579.2805)). The spectroscopic data of **8** were very similar to those of 7 (see *Exper. Part*). The ¹H-NMR spectrum of 8 showed a downfield-shifted signal for $H - C(9)$, and an upfield-shifted one for $H - C(7)$, relative to those of 7. The 13 C-NMR spectrum of 8 also showed a downfield-shifted signal for $C(9)$ and an upfield-shifted one for $C(7)$. The chemical shifts of all the other H- and Catoms of 8 were basically identical to those of 7. This clearly indicated that these two compounds were positional isomers. Thus, the structure of 8 was determined as $3a,6a,9$ -tris(angeloyloxy)-2a, 4β ,7,11-tetrahydroxybisabol-10(15)-en-5-one. Notably, this same compound has been isolated before from the roots of L. dentata [7]. The absolute configurations at $C(9)$ and $C(7)$ also remain to be established.

A proposed pathway for the formation of 7 and 8 from 6 is shown in the Scheme. Under hydrolytic conditions owing to atmospheric moisture, the reaction is expected to proceed *via* the dioxonium ion 9, which is generated *via* a 6-*exo* ring closure by means of rearrangement of the epoxide ring and the AngO group at $C(9)$ of 6 [8]. Subsequent

direct hydrolysis of the intermediate dioxonium ion 9 then leads to the observed hydrolysis products 7 and 8 [8].

We are grateful to Mr. S. Satoh and Mr. T. Matsuki for recording NMR and MS spectra.

Experimental Part

General. Column chromatography (CC): silica gel (230 – 400 mesh; Merck). Prep. HPLC: CCPD pump (Tosoh), TSKgel ODS-120T column (300 \times 7.8 mm; Tosoh), RI-8010 detector (Tosoh). Optical rotations: Jasco DIP-360 digital polarimeter. UV Spectra: Beckman DU-64 spectrophotometer; λ_{max} (log ε) in nm. CD Spectra: Jasco J-720 spectropolarimeter; $\Delta \varepsilon$ in l mol⁻¹ cm⁻¹ (λ in nm). IR Spectra: *Perkin*-Elmer Spectrum-One FT-IR spectrophotometer; in cm^{-1} . NMR Spectra: Jeol JNM-LA 600 (600/ 150 MHz, resp.) and $JNM-LA$ 400 (400/100 MHz, resp.) spectrometers; J in Hz, δ in ppm rel. to residual solvent signals: C_6D_6 : $\delta(H)$ 7.16, $\delta(C)$ 128.0; CDCl₃: $\delta(H)$ 7.27, $\delta(C)$ 77.0; CD₃OD: $\delta(H)$ 3.31, $\delta(C)$ 49.0. EI- and FAB-MS: Jeol JMS-DX-303 and JMS-700 mass spectrometers; in m/z (rel. %).

Plant Material. The roots of Ligularia dentata were collected in Sendai City, Miyagi Prefecture, Japan, in May 2004. A voucher specimen (LDB-2004-01) was deposited at the Laboratory of Molecular Structural Analysis, Tohoku Pharmaceutical University, Japan.

Extraction and Isolation. The roots of L. dentata (2.3 kg) were extracted three times (14 d each) with MeOH at r.t. The MeOH extract was filtered, concentrated under reduced pressure, and the residue (138 g) was suspended in a small excess of H_2O . The aq. suspension was extracted with Et₂O, and the Et₂O-soluble fraction was concentrated under atmospheric pressure to afford a residue (16.6 g), which was subjected to CC (SiO₂; 1. hexane/AcOEt 4:1 \rightarrow 1:4, 2. AcOEt, 3. CHCl₃/MeOH 4:1 \rightarrow 1:1, 4. MeOH): 44 fractions ($Fr. 1-44$) according to TLC. $Fr. 16$ was purified by prep. HPLC (MeOH/H₂O 2 : 1, 1.5 ml/min) to afford 0.9 mg of 2 (t_R 72.7 min). Fr. 18, after purification by prep. HPLC (MeOH/H₂O 2 : 1, 1.0 ml/min), gave 0.6 mg of 5 (t_R 55.8 min) and 0.6 mg of 1 (t_R 65.7 min). Fr. 20, after purification by prep. HPLC (MeOH/H₂O 2 : 1, 1.0 ml/min), gave 0.4 mg of 4 (t_R 63.0 min) and 0.2 mg of 3 (t_R 90.3 min).

 $(IE, 5R)$ -3-Acetoxy-9-(angeloyloxy)-5-hydroxybisabola-3,1(10),7(11)-trien-2-one (=1- $\{I\}$)-1-[(5R)-3-Acetoxy-5-hydroxy-4-methyl-2-oxocyclohex-3-en-1-ylidene]ethyl}-4-methylpent-3-en-1-yl (2Z)- 2-Methylbut-2-enoate; 1). Colorless oil. $\left[\alpha\right]_D^{21} = -48.4$ ($c = 0.06$, MeOH). UV (MeOH): 203 (4.2), 218 sh (4.1), 279 (3.8). CD (MeOH): -2.65 (286), +2.56 (244), +9.87 (204). IR (CHCl3): 3479, 1760, 1702, 1673, 1646, 1602. ¹H- and ¹³C-NMR: see *Table 1*. EI-MS: 390 (1, M⁺), 330 (20), 230 (50), 215 (51), 161 (100) , 149 (30) , 83 (41) . HR-EI-MS: 390.2062 $(M⁺, C₂₂H₃₀O₆⁺;$ calc. 390.2043).

(1S,2R,6S,9R)-2,7-Bis(angeloyloxy)-6,9-epoxy-11-hydroxy-6-methoxybisabola-3,10(15)-dien-5-one (¼2-Hydroxy-1-{[(2R,3aS,4R,7aS)-2,3,3a,4,7,7a-hexahydro-7a-methoxy-6-methyl-4-{[(2Z)-2-methylbut-2-enoyl]oxy}-3-methylidene-7-oxo-1-benzofuran-2-yl]methyl}-2-methylpropyl (2Z)-2-Methylbut-2 *enoate*; 2). Colorless oil. $\left[\alpha\right]_D^{21} = +11.5$ ($c = 0.09$, MeOH). UV (MeOH): 202 (4.1), 219 (4.1). CD (MeOH): -1.05 (356), +10.58 (241), -6.12 (216). IR (CHCl₃): 3525, 1713, 1692, 1647, 1563. ¹H- and ¹³C-NMR: see *Table 1*. EI-MS: 476 (1, M^+), 276 (2), 244 (3), 83 (100). HR-EI-MS: 476.2413 (M^+ , $C_{26}H_{36}O_8^+$; calc. 476.2410).

 $9a-(Angeloyloxy)-7\beta,10\beta-epoxy-11-methoxybisabola-1,3,5-triene-5,6-diol (= $(2S*,3R*,5R*)-2-(2,3-1)$$ Dihydroxy-4-methylphenyl)-2,3,4,5-tetrahydro-5-(1-methoxy-1-methylethyl)-2-methylfuran-3-yl (2Z)-2- *Methylbut-2-enoate*; 3). Colorless oil. $\left[\alpha\right]_D^{25} = +133.3$ ($c = 0.02$, MeOH). UV (MeOH): 204 (4.3), 220 sh (4.1), 280 (3.4). ¹H- and ¹³C-NMR: see *Table 2*. EI-MS: 378 (19, M^+), 346 (2), 305 (2), 278 (18), 263 (3) , 246 (100) , 231 (29) , 203 (15) , 175 (71) , 83 (88) . HR-EI-MS: 378.2049 $(M^+$, C₂₁H₃₀O₆^{*}; calc. 378.2042).

 $9-(Angeloyloxy)-11-methoxybisabola-1,3,5,10(15)-tetraene-5,6,7-triol$ (=1-[1-(2,3-Dihydroxy-4methylphenyl)ethenyl]-3-hydroxy-4-methoxy-4-methylpentyl (2Z)-2-Methylbut-2-enoate; 4). Colorless oil. $\left[\alpha\right]_D^{25} = +108.1$ (c = 0.04, MeOH). UV (MeOH): 203 (4.3), 211 sh (4.3), 279 (3.5). ¹H- and ¹³C-NMR: see Table 2. EI-MS: 378 (29, M⁺), 346 (1), 305 (4), 278 (13), 260 (21), 246 (35), 228 (16), 175 (100), 162 (34) , 83 (69). HR-EI-MS: 378.2047 $(M^+$, C₂₁H₃₀O₆⁺; calc. 378.2042).

Eudesma-4,11-diene-1 β ,15-diol $(=(1R*, 6R*, 8aR*)-1, 2, 3, 5, 6, 7, 8, 8a$ -Octahydro-8a-(hydroxymethyl)-4-methyl-6-(1-methylethenyl)naphthalen-1-ol; 5). Colorless oil. $\left[a\right]_D^{24} = +31.7$ ($c = 0.06$, MeOH). IR

(CHCl₃): 3503. ¹H- and ¹³C-NMR: see *Table 3*. EI-MS: 236 (5, M⁺), 218 (34), 205 (25), 188 (100), 177 (13), 159 (17), 145 (89), 131 (84), 119 (23), 105 (57), 91 (51), 79 (35), 67 (25), 55 (39), 41 (65). HR-EI-MS: 236.1789 (M^+ , C₁₅H₂₄O₂⁺; calc. 236.1776).

 $3a,6a,7$ -Tris(angeloyloxy)-2a,4 β ,9,11-tetrahydroxybisabol-10(15)-en-5-one (=(1R*,2S*,4S*,5R*,6R*)-5-(2,5-Dihydroxy-5-methyl-4-{[(2Z)-2-methylbut-2-enoyl]oxy}-1-methylidenehexyl)-2,6-dihydroxy-2 methyl-3-oxocyclohexane-1,4-diyl (2Z,2'Z)Bis(2-methylbut-2-enoate); 7) and 3a,6a,9-Tris(angeloyloxy)- $2\alpha,4\beta,7,11$ -tetrahydroxybisabol-10(15)-en-5-one $(=(IR*.2S*.4S*.5R*.6R*)-5-(4.5-Dihydroxy-5-methyl-5-0.12)$ 2-{[(2Z)-2-methylbut-2-enoyl]oxy}-1-methylidenehexyl)-2,6-dihydroxy-2-methyl-3-oxocyclohexane-1,4 $diyl$ (2Z,2'Z)bis(2-methylbut-2-enoate); 8). The oily compound 6 (4.0 mg) [2] was left for nine months in a refrigerator at 4° . The resulting product mixture was purified by prep. HPLC (MeOH/H₂O 2 : 1, 1.0 ml/ min) to afford 0.5 mg (13%) of $\overline{7}$ (t_R 54.6 min), 1.0 mg of 8 (25%; t_R 56.7 min), and 2.3 mg of unchanged 6 $(t_R 96.6 \text{ min}).$

Data of 7. Colorless oil. $[\alpha]_D^{20} = +19.6$ ($c = 0.05$, MeOH). ¹H-NMR (400 MHz, CD₃OD): 1.17 (s, $Me(12)$); 1.19 (s, Me(13)); 1.21 (s, Me(14)); 1.62 (ddd, J = 15.1, 8.3, 7.6, H – C(8)); 1.84 (dq, J = 1.5, 1.5, $Me(5')$; 1.89 (dq, J = 1.5, 1.5, Me(5")); 1.91 (dq, J = 1.5, 1.5, Me(5"')); 1.94 (dq, J = 7.1, 1.5, Me(4')); 1.96 $(dq, J = 7.1, 1.5, \text{Me}(4''))$; 1.98 $(dq, J = 7.1, 1.5, \text{Me}(4''))$; 2.29 $(ddd, J = 15.1, 4.6, 3.9, \text{H} - \text{C}(8))$; 2.85 $(dd,$ $J = 12.2, 10.7, H - C(1))$; 4.22 (dd, $J = 8.3, 4.6, H - C(9))$; 4.62 (dd, $J = 10.7, 2.9, H - C(2))$; 5.01 (dd, $J = 7.6$, $3.9, H-C(7)$; 5.25 (s, 1 H of CH₂(15)); 5.39 (d, $J=2.9, H-C(3)$; 5.43 (s, 1 H of CH₂(15)); 6.10 (qq, $J=$ 7.1, 1.5 Hz, H – C(3'), H – C(3'')); 6.12 (d, J = 12.2, H – C(6)); 6.17 (qq, J = 7.1, 1.5, H – C(3'')). ¹³C-NMR $(100 \text{ MHz}, \text{CD}_3\text{OD})$: 16.0 $(C(4'), C(4''))$; 16.2 $(C(4''))$; 19.8 $(C(14))$; 20.8 $(C(5'), C(5''))$; 20.9 $(C(5''))$; 25.5 (C(12)); 26.8 (C(13)); 36.9 (C(8); 48.5 (C(1)); 71.6 (C(2)); 72.8 (C(11)); 73.4 (C(9)); 75.8 (C(6)); 76.7 (C(4)); 78.7 (C(7)); 80.2 (C(3)); 112.2 (C(15)); 128.7 (C(2')); 128.8 (C(2'')); 129.5 (C(2''')); 138.8 $(C(3'))$, 139.2 $(C(3''))$; 140.3 $(C(3''))$; 152.0 $(C(10))$; 167.9 $(C(1'))$, 168.4 $(C(1''))$; 169.2 $(C(1''))$; 204.5 $(C(5))$. EI-MS: 580 $(1, M⁺)$, 562 (2) , 544 (17) , 480 (5) , 462 (4) , 444 (3) , 380 (9) , 362 (14) , 344 (14) , 280 (6) , 262 (57), 244 (18), 83 (100). HR-EI-MS: 580.2877 (M^+ , C₃₀H₄₄O₁₁; calc. 580.2883).

Data of 8. Colorless oil. $[\alpha]_D^{21} = +9.6$ ($c = 0.1$, MeOH). ¹H-NMR (600 MHz, CD₃OD): 1.13 (s, $\text{Me}(12)$); 1.15 (s, Me(13)); 1.21 (s, Me(14)); 1.68 – 1.70 (m, H – C(8)); 1.85 (9 H, dq, J = 1.5, 1.5, Me(5'), Me(5''), Me(5''')); 1.91 (dq, J = 7.3, 1.5, Me(4')); 1.95 (dq, J = 7.3, 1.5, Me(4'')); 1.96 (dq, J = 7.3, 1.5, $Me(4''))$; 2.22 – 2.26 $(m, H-C(8))$; 3.01 $(dd, J=12.5, 11.0, H-C(1))$; 3.48 $(dd, J=9.5, 2.6, H-C(7))$; 4.74 $(dd, J=11.0, 2.9, H-C(2))$; 5.33 (s, H-C(15)); 5.44 (d, J = 2.9, H-C(3)); 5.47 (s, H-C(15)); 5.72 (dd, $J = 7.0, 7.0, H - C(9))$; 6.04 (d, J = 12.5, H – C(6)); 6.05 (qq, J = 7.3, 1.5, H – C(3')); 6.11 (qq, J = 7.3, 1.5 Hz, $\text{H}-\text{C}(3'')$); 6.18 (qq, J = 7.3, 1.5, $\text{H}-\text{C}(3''')$). ¹³C-NMR (150 MHz, CD₃OD): 16.0 (C(4'), C(4'')); 16.2 $(C(4''))$; 19.8 $(C(14))$; 20.8 $(C(5'), C(5''))$; 20.9 $(C(5''))$; 25.1 $(C(12))$; 25.7 $(C(13))$; 36.8 $(C(8))$; 50.8 $(C(1))$; 70.0 $(C(2))$; 72.8 $(C(11))$; 73.7 $(C(9))$; 74.8 $(C(6))$; 76.5 $(C(4))$; 76.6 $(C(7))$; 80.1 $(C(3))$; 117.6 $(C(15))$; 128.7 $(C(2'))$; 129.0 $(C(2''))$; 129.2 $(C(2''))$; 138.5 $(C(3'))$; 139.9 $(C(3''))$; 140.4 $(C(3''))$; 148.6 $(C(10)); 167.8(C(1')); 168.3(C(1'')); 168.5(C(1'')); 204.3(C(5)).$ HR-FAB-MS: 579.2785 $([M-H]^-$, $C_{30}H_{43}O_{11}^{-}$; calc. 579.2805).

REFERENCES

- [1] K. Gao, Z. Jia, Phytochemistry 1998, 49, 167.
- [2] H. Baba, Y. Yaoita, M. Kikuchi, Helv. Chim. Acta 2007, 90, 1028.
- [3] K. Gao, L. Yang, Z. Jia, *Indian J. Chem., Sect. B* 1997, 36, 715.
- [4] R. D. Burnett, D. N. Kirk, J. Chem. Soc., Perkin Trans. 1 1981, 1461.
- [5] K. Suenaga, T. Shibata, N. Takada, H. Kigoshi, K. Yamada, J. Nat. Prod. 1998, 61, 515.
- [6] T. Teruya, H. Shimogawa, K. Suenaga, H. Kigoshi, Chem. Lett. 2004, 33, 1184.
- [7] K. Gao, L. Yang, Z. Jia, Planta Med. 1997, 63, 461.
- [8] J.-L. Giner, J. A. Faraldos, Helv. Chim. Acta 2003, 86, 3613.

Received February 26, 2006